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ABSTRACT. Let c = 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

be given. The

generalized rn~merical range of an n X n matrix A,

associated with c, is the set W
~
(A) = [~

where (x1, . . . ,x1~) v~.ries over orthonorznal systems

in C~ . Characterizations of this range , for real

c, are given. Next, we study integrals of the fo rm

I W~(A)d~L(c) where p.(c) is a measure defined on a D t’) ( ‘
~~
‘

domain in ~R
nl
. The above characterizations are used !~~~~~~~~~

‘

to study the inclusion relation I W (A)d~I(c) c ?~W~~(A); DEC 10 1916

We determine those ?~, for which this inclusion holds -

. ~~~~

for all n x n matrices A. Such relations lead to

more elementary ones, when the integral reduces to a

finite linear combination of ranges . In particular, we

obtain the inclusion relations of the form WC(A) c?~w~~(A)

which hold for all A.
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~~~~~t~~duc~~on. The generalized numerical range of an n X a

n
complex matrix A, associated with a fixed vector c = ~~ .. . £ 

~

is the set of complex numbers

w~ = W
(7, . . .,~~)(A) 7~(Ax~~x~) : (x1, .. ., x )  £

where An is the set of all orthonormal n-tuples of vectors in We

call W~ a generalized range since for c = (i,o, . . ,0) it reduces to the

classical range

W(A)  = ( (Ax ,x) lxii = 11

It is clear from (1.1) that W remains invariant under permutations

of the components of c; that is, W~ depends on the unordered set

‘~n~ 
rather than on c.

Westwlck, [iJ , has sho ;n that if c is a real vector then is convex,

but if c € ~
n with n 

~ 
3, then W

~
(x) may fail to be convex even for

normal A. For this reason we restrict our attention, in this paper, to

generalized numerical ranges with real coefficients.

Our first purpose is to characterize the sets W~. In Section 1 we

show that

W (A) = ~tr(HA) H c

where U is a class of Hermitian matrices depending on c.

In SectIon 3 we define integrals of the form 1~ W~(A)d~L(c) where ~

is a domain In and ~.t(c) is a nonnegative measure on ~~~~. Since

the sets W are convex, such integrals are convex as well, and. we may

define them in terms of their support functions. [ ~~~~~

- L ~
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Finally, using the above characterization of W , we investigate

inclusion relations of the form

(1.2) f  W (A)d~.L(c) c ?‘W~~(A) , = constant

rhich hold, uniformly, for all A € C !~><~~ 
i.e., for all n-square

matrices . If the mea8ure p.(c) is concentrated. on a finite number of

vectors a, then (1.2) is reduced to Inclusion relations involving finite

linear combinations of generalized numerical ranges . Such relations were

considered in earlier works [2 , 3] .

In particular, for given vectors a, c’ we obtain necessary and

sufficient conditions under which

W (A) c ?~W , , \,-/A € ~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For any vector

c = (y1, 
,~~) consider the diagonal matrix

C = diag(c) = diag(v1, . . .,~~) 
‘

and construct the class of matrices

U = conv[UCU* U unitary~ ,c

where cony denotes the convex hull.

Since we restrict attention to c € it is evident that the

elements of ~ are Hermitlan .c
Using we have the following characterization of ranges with

__ ~~~~~
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THEOREM 1. It c £ )R~ then

W (A) = ttr(HA) H €

Proof. It follows from the definition of w
~
(A) in (1.1) that

W (A) = [tr(CU*AU) U unitary]

Thus

(2.1) W
~
(A) = [tr((UCU*)A) U unitary]

which Implies that

W (A) c [tr(HA ) H £

For the converse inclusion let

H = ~ ?~1(u1cu~) 0 , y = 1
1. 1.

be an arbitrary element of 
~~ 

By the convexity of W~ and by (2.1)

we have

tr(HA) = 

~ 
?‘
~ 
tr((U~CU~)A) e W (A)

So,

[tr(HA) H € 14
C
] C W (A)

and. the theorem follows.

We introduce t~o definitions which lead to another characterization

of W (A).

DEFINITION 1. (i) A real vector a = (y~, 
.. . ,y) is called ordered

if

.. .
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(ii) We say that c, c’ satisfy a ’ .< c if there exists a doubly

stochastic matrix S (i.e., a matrix with nonnegative entries wnose

row sums and columns sums equal 1), such that c ’ = Sc.

In Theorem 7 of [3] we proved the following.

LEMMA 1. For ordered a, c’ we have c ’ .< c if and only if

2 £
7~ y <  !~ y ,
j=1 j=l

with equality for 2 = n.

DEFINIflON 2. Let c € ]E~, and let A2 (1 < £ < ii) be the set of

all. orthonormal £-tuples of vectors in C~. We define to be the

class of all Hermitian matrices H for which

2 2
• (2.2) T~ (Hx 4,x ) < ~ , ‘~.,‘(x 1, . . . , x2) € A2 , 2 =

=1 LI i —1 LI

with equality for 2 = n.

Let e1,.. ,e be the standard basis of C’~. Note that if ~ = 0

(which is the case assumed in Section 3), then the equality for 2 = n in

2.2 Implies that 

n
E (He 4,e ) 

~~ E ~
‘ 0

j111]. i

I .e., all members of U have trace 0.
C

LEMMA 2. If c is ordered then U

Proof. Take a unitary matrix and orthonormal vectors x1, ,x 2,

(1 ~ 2 
~ 
n). Since the vectors Yj = ~~~~ j = l,. . . ,2, are orthonormal

as well, i~ is not hard to verify that

2 2
(2.3) ~ (UCU*xi,xi) = ~ (Cy 4,y~) < + + 

~~~~ 
, c = diag(c)

j=1 “ “ j=1 ‘

with equality for £ = n. Therefore, if

Lit-.. -

ji~~~ 4i 
________________________________________
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H =
~~~

?
~i
UiCU , ~~~~~~~~~~~~~

• is any (Hermitian) matrix in ~ , we find by (2.3) that

£ 2 2 £
r (Hx ,x)~~~~~ ~~~~~~~~~~~~~~~~~~~~~ r 7 ~~~~~~~~~~~~~~~~~~~~~~~

j=l ~ j=l I ~ i j=l j=].

with equality for 2 = n. So, by Definition 2, H € U~, and consequently

Conversely, take any H € U~ . Since H is Hermitian, it is uni-

tarily similar to a real diagonal matrix, i.e., there exists a unitary

V such that

(2.4) C’ V~}W = diag(?~j,. . . ,.x t)

where we may assume that c ’ ~~~~ 
.. ,y ’) is ordered.. Us ing

(2.2) and the ~rth~n ’rmal veet’rs x
3 

= Ve~~ j = l,~ ~~~~ we find

that

£ 2 £ 2 £
‘
~~ 

y ’ = ~~(C’e ,e ) =  ~~(V*HVe ,e ) =  ~.~ (Hx ,x )<  ‘
~~ 

y
j=]. j=l ~ j=l ~ j=l ‘~ j=l

with equality for 2 = n. That is, by Lemma 1, c ’ .< c. Hence, there

exists a doubly stochastic matrix S such that a’ = Sc. Now recall that

doubly stochastic matrices are convex combinations of permutation matrices

In particular S = ; Nt,. P1,.. Thus

( 2 . 5)  ~~‘ = r ?‘.0.P0.c ; ?~ 
-
~, 0 , 7 = 1

0cS
n

where S~ is the symmetric group. Since for every B, P~,.BP0. has both

the rows and columns of B permuted according to 0 , we have

(2.~) diag(Pc,.c) = P0. diag(c)P = PJCP~
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So, by (2 5), (2 6),

(2.7) C’ = diag(c’) = ~ ?~ diag(P0.c) = ~~cP

From (2.4) and (2.7) we obtain

(2.8) H = VC1 V~ = ~ ?~ [ (vP0) c (vP0)* I = E ?~0(u0cu) ?~~> 0 , 7~ = 1

where U0 VP0 are, of course, unitary. Hence, H € 

~~~~
‘ 

i.e., ~ C

and the proof is complete.

Theorem 1 together with Lemma 2 imply a second characterization of

generalized numerical ranges with real coefficients.

ThEOREM 2. If c is ordered then

W (A) = [tr(HA ) H €

Another simple consequence of the last lemma and the convexity of

is that for ordered c, He is convex.

At this point we recall the definition of the k-numerical range,

(i. < k < ii), given by Ha].mos {~ , §167], which after a convenient normaliza-

tion becomes

wk(A) 
~~ tr(PAP) P = orthogonal projection of rank k]

It can be verified that Wk(A) may be written as

Wk(A) = {
~ ~~~ 

(Ax~~x~) : (xl, . . . ,xk )

Hence we see that

Wk(A )=W (A) , with ck =~~~(el
+ ...÷ e

k) .
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That is, the k-numerical range is a special case of the generalized

numerical range.

The matrices if are those Hermitian matrices which satisfy

Definition 2 with c = ck. Using this definition one can show that

U = [Hermitian H : 0 .< H < I , tr(H) = 1]

Thus Theorem 2 generalizes the result

W
k(A)= [tr(HA ) :O < H < ~~~I , tr(H) = 1] ~~~~~~~~~~~~~

of Fillmore and Williams [ 4 , Theorem 1.2].

~~~~~~~~~~~~~~~~~~~~~~~~~ In this section we are interested

in linear combinations, or more generally, in integrals of the sets w (A ),

where A is arbitrary but fixed, and a varies in s~~e domain of

Let c = 

~ l’ 
.
~~~ ) be a real vector with ‘ ~ ~ 0, and

consider the vector b = 

~ l’ ~~~ defined by

We have = 0 and

B m diag (b)=diag(c) -~~~I = C - ~~~I .

So, by Theorem 1,

wb(A) ctr(UBU*A) U unitary]

[tr[U(C - ~ I)U*A } : U unitary] = W
~
(A) - [~~tr(A)} .
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This argument suggests that it is convenient to restrict attention

to those vectors c for which 
~ 

= 0. The limitation merely

involves a translation of the ranges by multiples of the trace, or,

equivalently, the restriction to matrices of trace 0.

Since Wc is invariant under permutations of the 7,~, 
we may

assume that each vector c in our domain is ordered.. Hence, we con-

---- der~~~~~aet . •Q~4ered vectors c with L y . = 0 , which form a

conical subset ~ of an (n-l)-diinensional subspace of IR~

We are ready now to study integrals of Wc (A) relative to an

arbitrary measure ~~ on ~ , that is integrals of the form

(3.1) = J~ (A) f  W (A)d~~(e) .

One way of defining the integral in (3.1) is by carrying linear sums,

over partitions of (~, to the limit . Alternatively, one realizes

that J~ , being an integral of the convex sets W~ , is a convex set

as well . Hence J~ may be characterized by Its support function

(e.g.  r 2 ]  part V),

u(J ,e) = sup Re(ze le) , 0 < e <
1.L •

•* 
-

In order to evaluate u(J~,e), we consider the support funct ions of

our closed convex integrands W .  We have

u(W ,e) = u(c,e) = max Re(ze_10) , o < e <
C z E W

C 
F

Since u(c,O) is a linear function of c in the sense that

u(?\W
~ 

+ l~.’w~,, e) = ?~u(c,0) + l~’u(c’,0) , ~i?~,?’~’ > 0 ,

we have

~~~

--  - — - - —
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u(J~ ,e) = u (fwc~~(c),e) =fu(w
,e)~~(c) =fu(c,e)d~(c)

Of course , the measure p. may be concentrated at a finite number

of points c , “~~,c C (~~. In this case the integral J reduces to

the finite linear combination

p.(c1)W (A) + ... + p .(c )W (A) .
1 m

Since W = ?~W for scalar A , we shall avoid integration over
C

propor~~onal vectors of (‘ . This can be achieved by restricting integra-

tion to the domain

[c c = 
~~i ’ ’ ~ r)’ ~ = o~ ~:1. 

= 1] ,

which is the bounded set of all vectors in C with = 1.

The above concept of integration can be extended. in order to con-

sider the integral

(3 .2) 
~p. U~ d~L( c)

We recall that the integrands u,~ are convex sets in the

(n 2
+ n  -2  real dimensional) space H of Hermitian matrices of trace

0. It follows that Up. is also a convex set in H. Again , the con-

vexity of and implies that the integral may be defined in

terms of the support functions of U .  Here , in analogy to the previous

case , the support function of i~ assigns to each point H1 on the

unit sphere of ~ , the distance from the origin 0 of H to the plane

• - f  support of U
~ 

perpendicular to the direction öi~~.

Having the integrals and Up. defined we state our main

result .

L
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THEOREM 3. Let p. be a nonnegative measure on £1, and let

c ’ ~ 0 be an ordered vector with ~ = 0. Then

f  W (A)d~(c) AW ,(A), ~~A

if and only if A 
~ 

i~(c’) or A < ~(c’) where

‘
..
‘

(3.4a) TI(c’) = max I , d~.L(c)
lc~2.( n ‘~ I~ ~

‘i + +

p 7
• (3 .4b) ~(c ’) = mm J ~ 

dp.(c)

~ 
7n 

+ + 7n-2+1

Proof. In the proof of Lemma 7 of [ 3 ]  we have shown that if c ’ ~ 0

with 
~~ ~, = 0, then

(3 . 5)  + ... + > 0 , 7 ’ + + < 0; £ = 1,~~ ~,n-3.

This establishes that ,-
~~~~~ of (3 . 11W ) are well defined and since p. is

a nonnegative measure we see that i~ ~ 
0 , ~ < 0.

Next we show that A 
~ ~(c ’) or A < ~(c’) imply (3 . 3) . For this

purpose we use the definition of Hp.~ Theorem 2 , and. the linearity of the

trace to evaluate the set on the left of (3 . 3) :

(3.6) f  W (A)d~~(c)  =f [tr (HA ) : H € M ] d ~~(c)

= {tr~~i~~ H Cf H
~

d
~L(c)} = [tr(HA ) : H € Up.]

Now choose A with A 
~ 

ii( c ’) .  Since A >  0, the vector Ac ’

remains ordered. Hence, by Theorem 2,

(~~. i)  AW (A) = W~~ , (A) = (tr (HA) H € 

~~~~~ 

, }
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From (3 .6), (3 .7) we see that in order to prove (3 .3) it suffices to

show that

(3 .8)

Thus, let H0 be a matrix in Up.. Then by (3.2), there exist elements

H € for all c € j ~, such that

H0 =f H d4-L(c)

The matrices He satisfy Definition 2, and. siace p. is a nonnegative

measure on ~ , it follows that for £-tuples x1, ”~~,x2 in we have

£ ,~ 2
(~~.9)  ~ (H0x~~x~) —_ J ~ (H x4~x~)d~(c) <J (~~~+ ...+y 2)dp.(c); 2 =

=1 j~~~—l t,

with equality for £ = n. Since ~ = ) = 0, the above equality for

1 = n  implies

(3.lOa) ~~ (H~x .,x .) = 0 = A ~
j=1 ‘~ j =3. ~

For 1 < 2 < n we use the assumption A > i~ t obtain f rom (3 .~) that

£
(3.lob) ~~(H0x~~x~) < (i~+ 

. . . + v ’) f 
~~~~~~~~~~~~~~~~~~~~~ 

dp.(c) < A (v~ ÷... +~~) .

By De finition 2 , the relations (3.10) mean that H0 € UAC , . Hence , (3.8)

holds , and. consequently the inclus ion in ( 3 . 3)  follows . J
For A ~ the situation is slightly different . Consider the

vector C
” 

~~~~~~~~~~~~~~ Since c ’ is ordered, c” is too . Also ,

the condition A <  ~(c ’) becomes

p 
~~~ 

p 
~~~~~ 

.+7~(3.11) -A> .-~(c ’) -mm J ,~ + 
, d4J-(c) = max J d3i(c)• y .. 

1<2<n ~ - . _7~~~~ J

= ~(c ”) . 
•
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Hence, by the prdvious part of the proof , we have that

(3.12) f  W~ (A)d~ (c) c -Aw ,,(A) , VA €

But -Ac ” is merely a reordering of Ac ’ . Thus , the set on the right

of (3.12) sat isfies

-AW ,, (A) = w ,,(A) = w ,(A) = AW , (A)
c -Ac Xc c

and ~e cbt~ in (
~~
.3).

To complete the proof we have to show t hat if ~ A < 11, then (3 .3)

does not hold for some A € C~><~. First assume 0 < A < ~~~. That is,

for some 2 , 1 < £ < n,

(3.13) A (7~ + ... + y
~) <f (y~ + ... + y2)~~~(c)

Consider the matrix A2 = 12 ~ 
0
n-V A simple computation shows that

for an ordered. vector c, the range w
~
(A2) is a real interval with

right end-point 7
~ 

+ + 7~ . Then, the left side of (3 .3) represents

a real interval with right end-point

+ ... + y2)dp.(c) ,

which , by (3.13), exceeds the right end-point A(v~ + + v”.) of WAc~~
Finally, if ~(c ’) < A < 0, then (3.ll) implies that 0 < -A < ~(c”) 4

where c ” ~~~~~~~~~~~ Thus by the above example the inclusion

f  W
~
(A2)d~

(c) C -Xw ,, (A 2 ) = AW ,(A2)

fa ils t~ h- 1d., and. the theorem follows . I ~
Wo remember of course, that we restricted integration to the domain

~ for convenience only. Therefore, if so desired, p.(c) can be

~ 
I

- 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~



~ I 
extended to the domain C, and Theorem 3 remains valid.

If p. is concentrated at a finite number of vectors c1, . ,~ E C,

• then Theorem 3 characterizes all 2’ for which

i=l 
P.(C

~
)W
~~
(A) C AW ,(A) , ‘v/A €

A result of this type is given in Theorem 1 of [2] .

Of particular interest is the case where p. is concentrated at a

single vector a ” € C. That is,

- f  W~(A)dp.(c) = W ,, (A) ,

• and ~~~~ of (3.13) are given now by
,, ,, ,,

• ri(c’) = max 
~ + ÷ 

, ; ~(c’) = mm + +l< 2< n ~1 1< 2<n ~1

Thus, from Theorem 3 we conclude,

COR OLLARY . Let c ’ ~L 0 and c” be ordered vectors with 
~~ 73 = ~~ 

= 0.

• 1  2~a

w ,,(A) c Aw , (A) , ‘~-~‘A € ~~~

if and only if A >  ri(c’) or A .< ~(c’) where ~~~ are given in (3.14) .

This result was proved differently in Theorem 8 of {3J .
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